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Abstract
We analyse the so-called Blume–Emery–Griffiths (BEG) neural network at
zero temperature. An upper bound on its storage capacity is given if we want
the stored patterns to be fixed points of the retrieval dynamics. Besides, we
discuss a more liberal notion of storage capacity introduced by Newman (1988
Neural Netw. 1 223–38) in the context of the Hopfield model (Hopfield 1982
Proc. Natl Acad. Sci. USA 79 2554–8). We show that, similar to the findings
in the neural networks literature, the BEG model with this notion of storage
capacity can store a number of patterns proportional to the number of neurons
in the model.

PACS numbers: 05.50.+q, 05.40.−a, 87.18.Sn
Mathematics Subject Classification: 82c32, 82B44, 60k35

1. Introduction

The storage capacity of binary neural networks, especially the Hopfield model, has been
intensively studied in the recent probability, physics and neural networks literature (see, e.g.,
[N88, L94, L97, T95, T98, Lö98, Lö99, B99]). Lately one has also studied a particular non-
binary case, where the patterns to be stored consist of an information whether the corresponding
neuron has ‘seen’ a +1 or a −1 (for example whether it has seen a white or a black pixel)
or whether the neuron has been inactive (0). As a result, the state space of the spins of the
neural network changes to {0,−1, +1}, as opposed to {−1, +1} in the case of the Hopfield
model. The special role taken by 0 (namely to encode the inactivity of a neuron) makes the
network different from the usual three-state Hopfield model (also called the Potts–Hopfield
model, where 0 is just one of the possible ‘colours’ seen by a neuron) studied for instance in
[FMP92] or [M96].
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While the Hopfield model originally was introduced by Pastur and Figotin [FP77] as a
simplified model of a spin glass and later on reinterpreted as a neural network by Hopfield
[Ho82] (indeed it was Hopfield’s work that attracted the interest of many researchers to that
area), first models for the question raised above were studied by Baram and Sal’ee [BS92].

The basic idea behind all these models is to choose the information to be stored—which
usually is referred to as patterns—as the local minima of an appropriate Hamiltonian (this
will be further developed in the next section) on the set {0,±1}N , where the set {1, . . . , N}
constitutes the set of neurons. Hence the retrieval dynamics (usually a Monte Carlo dynamics,
possibly at zero temperature) will eventually converge to the stored patterns. Since, according
to the other rules of neural networks, this is possible only up to a certain accuracy depending
on the number of patterns to be stored, one can introduce the notion of a storage capacity of
the model as the critical number of patterns (depending on N, of course) up to which the model
can successfully reconstruct these patterns.

In this paper, we consider two distinct definitions of storage capacity at zero temperature.
The first one (as shown by McEliece et al [MPRV87], also see [Bu94, V94, P96] for nice
proofs for this result, [B99] for the corresponding upper bound and [Lö98, Lö99] for the case
of biased or dependent patterns) leads to a storage capacity of at least N

γ log N
for the Hopfield

model with N neurons and randomly and independently chosen unbiased patterns. Secondly,
the essential progress of Newman’s work [N88] was that he was able to give a proof for the
result of Amit, Gutfreund and Sompolinsky [AGS87] showing that the Hopfield model enables
storage of even αN patterns (for an α > 0 small enough), if small errors are tolerated. The
value for α obtained by Newman was α = 0.056. This has been improved by Loukianova
[L94, L97] to α = 0.071 by a refined large deviation analysis and by Talagrand [T95, T98]
to α = 0.08 by further improving on Loukianova’s idea. Nevertheless, it remains an open
question, whether the prediction of α = 0.14 in [AGS87] on the basis of the replica method
and computer simulations can be mathematically justified.

It has been argued that for character recognition, sparse patterns, that is patterns with
an intensity of less than 100% for being ±1, are more realistic than equiprobable binary
ones. In [BS92], a first model for such ternary networks (networks with input patterns from
{−1, 0, +1}N ) was introduced and studied. The authors came to the conclusion that their model
of a neural network can store about N

γp log N
patterns, where p is the activity of the patterns, i.e.

the probability that a fixed spin of a fixed pattern is different from zero. Here the first of the
two notions of storage capacity described above is used. In particular, the authors conclude
that the storage capacity of the networks increases when the activity is low.

However, other authors have proposed that an optimal Hamiltonian, guaranteeing the
best retrieval properties for neural networks with multi-state neurons, can be achieved by
maximizing the mutual information content of the networks (see, for instance, [DK00,
BoVe02]). In this way, for two-state neurons the Hopfield model is retrieved while for the
three-state problem described above, one obtains a spin glass version of the three-state Ising
model introduced by Blume, Emery and Griffiths to model and study He3–He4 mixtures. We
will refer to this model as the Blume–Emery–Griffiths (BEG) neural network (or spin glass).
In [BCS03, BV03] the non-rigorous replica method is used to study the storage capacity of
such networks. In this paper, the authors conclude that a number of αN patterns can be stored
(where α > 0 has to be chosen appropriately).

The goal of the present paper is to analyse rigorously the storage capacity of the BEG
neural network (using both notions of storage capacity discussed above) and to compare it
to the capacities found by Balam and Sal’ee in [BS92]. With this setup the results obtained
resemble the results in the ordinary Hopfield model: the BEG neural network model is shown
to have the capacity to store a number of patterns in the same order of magnitude as the number
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of patterns that can be stored in the Hopfield model. The bound on the storage capacity for the
BEG network is found to be below the bound on the storage capacity of the network studied in
[BS92], though similar techniques are employed in both cases. In the BEG model the capacity
decreases when the activity becomes small.

This paper is organized in the following way: section 2 contains the basic setup, especially
the type of patterns we consider, the definition of the models we have in mind, as well as
the definition of storage capacity we use. Section 3 details our results concerning the storage
capacity of the models introduced in section 2. Both the dynamic and the static notion of
storage are analysed. The proofs are given lastly in section 4.

2. The basic setup

This section describes the two models we will be interested in as well as the two notions of
storage capacity we use.

For the rest of this paper a network will always operate on N neurons, labelled by 1, . . . , N .
In this network one wants to store M = M(N) patterns

(
ξ

µ

i

)µ=1,...,M

i=1,...,N
, which for the sake of

this paper will always be thought of as random elements on the space {−1, 0, +1}N . The
underlying probability distribution of these patterns will be such that makes all the random
variables ξ

µ

i independent with

1 − p = P
(
ξ

µ

i = 0
)

and P
(
ξ

µ

i = 1
) = P

(
ξ

µ

i = −1
) = p

2
(2.1)

for some fixed p ∈ (0, 1).
Correspondingly, for each i = 1, . . . , N there is an associated spin σi that also takes its

values in the space {−1, 0, +1}. A network will now be defined by a dynamics on the spin
space {−1, 0, +1}N , or equivalently (if possible), by a Hamiltonian, that is minimized by the
dynamics.

Two different sorts of networks will be distinguished for our case of a ternary neuron.

2.1. The simple threshold network

The idea of the simple threshold network is to adapt the gradient dynamics from the Hopfield
model of binary neurons, hence to switch a spin σi into the direction of his external field

hi(σ ) =
∑
j �=i

σjJij = 1

p2N

∑
j �=i

M∑
µ=1

σj ξ
µ

i ξ
µ

j . (2.2)

Nevertheless, to cope with the fact that now we have ternary neurons, we only switch σi

into the direction of hi(σ ) if this external field is strong enough. Otherwise we switch σi

to 0. Formally the rule is the following: update the spins σi asynchronously, i.e. one after
another, in a random fashion (each time the model is updated, an independent random variable
from {1, . . . , N} is drawn and we update the corresponding spin). Choose a (fixed) threshold
W > 0. The updating rule for σi is then given by:

Ti(σ ) =



1 if Np2hi(σ ) > W

0 if −W � Np2hi(σ ) � W

−1 if Np2hi(σ ) < −W

(2.3)

where for convenience we have multiplied the external field by the factor Np2.
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2.2. The Blume–Emery–Griffiths network

The BEG network was recently advertised to be the most effective network for storage of
ternary data. In principle, it works like the simple threshold network described above with
the difference that the threshold is computed from the patterns. It is given by the following
updating rule: update the spins σi asynchronously at random. The updating rule for σi is then
given by

Ti(σ ) = sgn(hi(σ ))�(|hi(σ )| + θi(σ )). (2.4)

Here � is the Heaviside function (which is 1 for positive x, and 0 otherwise),

θi(σ ) =
∑
j �=i

Kijσ
2
j ,

where

Kij = 1

p2(1 − p)2N

M∑
µ=1

η
µ

i η
µ

j , and η
µ

i = (
ξ

µ

i

)2 − p,

and hi is the external field defined in (2.2).
The dynamics described above minimizes the Hamiltonian function of the BEG network:

HN(σ) = − 1

2p2N

N∑
i,j=1;i �=j

M(N)∑
µ=1

σiσj ξ
µ

i ξ
µ

j − 1

2p2(1 − p)2N

N∑
i,j=1;,i �=j

M∑
µ=1

σ 2
i σ 2

j η
µ

i η
µ

j . (2.5)

Indeed, let σ ′ = (σ1, . . . , σi−1, Ti(σ ), σi+1, . . . , σN). Since

HN(σ) = −1

2

N∑
i,j=1;i �=j

Jij σiσj − 1

2

N∑
i,j=1;,i �=j

Kijσ
2
i σ 2

j ,

we have

HN(σ ′) − HN(σ) = (σi − Ti(σ ))
∑
j ;j �=i

Jij σj +
(
σ 2

i − Ti(σ )2
) ∑

j ;j �=i

Kijσ
2
j

= (σi − Ti(σ ))(hi + (σi + Ti(σ ))θi(σ )).

And using (2.4) it is easy to check that for all values of σi and Ti(σ ), the quantity
HN(σ ′) − HN(σ) is non-positive: the dynamics leads to a local minimum of HN .

Remark 2.1. Dynamics (2.4) can be viewed as the limit as β → ∞, i.e. the zero-temperature
limit, of the following stochastic updating rule: for all s ∈ {−1, 0, +1},
P [Ti(σ ) = s] = exp(−βHN(σ1, . . . , σi−1, s, σi+1, . . . , σN))∑

t∈{−1,0,1} exp(−βHN(σ1, . . . , σi−1, t, σi+1, . . . , σN))

= exp(β(his + θis
2))∑

t∈{−1,0,1} exp(β(hit + θi t2))
.

We introduce the following two definitions of storage capacity.
The dynamics T := (Ti)i=1,...,N is considered to be the retrieval dynamics of the

corresponding neural network, that is to say, given an input σ the network will ‘recognize’
this input as that pattern, that is found by (possibly many iterates of) T.

The least one could expect from such a dynamics is that the patterns themselves are stable
under T, in such a way that, if we input one of the ξµ we also find ξµ, which implies that ξµ

is a local minimum of the corresponding Hamiltonian—if there is one. The storage capacity
in this concept is defined as the greatest number of patterns M := M(N) such that all the
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patterns ξν are stable in the above sense. Of course, this number depends on the randomly
chosen patterns, so that in the following we will always speak of numbers M(N) such that
with probability converging to one (in some sense) a pattern is (or all the patterns are) stable.
Let us remark that for the Hopfield model with one pattern (M = 1), the configurations ξ 1

and −ξ 1 are trivially the only global minima of the Hamiltonian for all values of N, but this is
no longer the case for the BEG model: ξ 1 is not even necessarily a local minimum of HN for
a fixed value of N. We only expect probabilistic and asymptotic results.

The other approach to storage capacity is due to Amit et al [AGS87] and Newman [N88].
It takes into account small errors we are willing to accept in the restoration of the patterns
(with the idea to increase the storage capacity). So we are satisfied if the retrieval dynamics
converges to a configuration which is not too far away from the original patterns. Thus, for
the BEG model introduced above, in this concept, a pattern ξν is called stable if it is close to a
local minimum of the Hamiltonian, or in other words if it is surrounded by a sufficiently high
energy barrier. Technically speaking, we will call ξν stable if there exists ε > 0 and δ > 0
such that

inf
σ∈Sδ(ξν )

HN(σ ) � HN(ξν) + εN. (2.6)

Here the set Sδ(ξ
ν), where the infimum is taken over, is the Hamming sphere of radius δN

centred in ξν . Again we use the notion of storage capacity for the maximal number M(N) of
patterns such that (2.6) holds true for all ξν almost surely.

3. Results

In this section we give a lower bound on the number of patterns that can be stored in the simple
threshold model and the BEG model introduced above. For the latter we analyse both notions
of storage capacity.

First of all, let us consider the storage capacity of the simple threshold network introduced
in section 2:

Theorem 3.1. Assume the patterns ξµ are chosen at random as described above and that
their number satisfies M(N) = N

γ log N
. Moreover let us choose the threshold as

W = N(p − ε)

2
for some small ε > 0 (3.1)

(and this choice is optimal).
Then for the simple threshold model the following assertions hold true:

(1) If γ > 24p

P


lim inf

N→∞


M(N)⋂

µ=1

T ξµ = ξµ





 = 1

i.e. the patterns are almost surely stable.
(2) If γ > 16p

P


M(N)⋂

µ=1

T ξµ = ξµ


 = 1 − RN

with limN→∞ RN = 0.
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(3) If γ > 8p for every fixed µ = 1, . . . ,M

P(T ξµ = ξµ) = 1 − RN

with limN→∞ RN = 0.

Here T is the family of mappings (Ti) introduced in (2.3).

Remarks 3.2.

• Part (3) of theorem 3.1 has already been obtained in [BS92].
• Observe that the above bounds depend on p in such a way that the storage capacity

increases, if p becomes small. This is after some considerations not too surprising, since
in the limit p → 0 (e.g. if p � 1/N ) all the patterns are equal to the pattern with spins
equal to 0, which is then easy to store.

We find that the situation in BEG model is quite similar. Here our result is the following.

Theorem 3.3. Assume the patterns ξµ are chosen at random as described above and that
their number satisfies M(N) = N

γ log N
.

Define

γ ∗(p) := max

{
2((1 − p)2 + 1)

p
,
p((1 − p)2 + 1)

2(1 − p)2

}
.

Then for the BEG model the following assertions hold true:

(1) If γ > 3γ ∗(p)

P


lim inf

N→∞


M(N)⋂

µ=1

T ξµ = ξµ





 = 1

i.e. the patterns are almost surely stable.
(2) If γ > 2γ ∗(p)

P


M(N)⋂

µ=1

T ξµ = ξµ


 = 1 − RN

with limN→∞ RN = 0.
(3) If γ > γ ∗(p) for every fixed µ = 1, . . . , M

P(T ξµ = ξµ) = 1 − RN

with limN→∞ RN = 0.

Here T is the family of mappings (Ti) introduced in (2.4).

Remarks 3.4.

(1) Observe that other than in the simple threshold model discussed in theorem 3.1 the bound
on γ ∗(p) in theorem 3.3 is increasing for p → 0, implying that our bounds on the storage
capacity of the BEG model become smaller for small p. Even if we do not have a proof of
this statement (because we are not able to show the corresponding upper bounds for the
storage capacity), it seems that the simple threshold model outperforms the BEG model.
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(2) It might be expected that both the simple threshold model and the BEG model coincide
with the Hopfield model in the limit p → 1. This is however not the case. In the simple
threshold model the optimal threshold (3.1) is increasing for p → 1 in order to allow
for restitution of those spins which are zero. This explains that for p = 1 the γ ’s in
theorem 3.1 are larger than the corresponding γ ’s in the Hopfield model (implying a
smaller storage capacity of the simple threshold model). The situation in the BEG model
is even worse. Even though one could expect the θi’s to converge to (the positive number)
M/p2, the variance coming from this term spoils the bounds on the storage capacity in
such a way that γ ∗ converges to ∞ in the p → 1 limit. One remarks that the divergence
of the variance of θi(ξ

1) for p → 1 is due to the prefactor 1
(1−p)2 . This might raise the

question of whether the performance of the BEG model can be improved by changing
this factor. This in indeed the case: redoing the calculations for the proof of theorem 3.3
with 1

(1−p)
instead of 1

(1−p)2 , one obtains the bound

γ ∗(p) = max

{
2

p
,

2p

(2 − p)2

}
.

Note that this choice of γ ∗(p) is not only finite for p = 1 but even agrees with the
optimal γ ∗(p) = 2 in the Hopfield model (see [B99] for the optimality). This change
in performance does not cause much surprise. Computing the variance of η

µ

i η
µ

j we find
p2(1 − p)2. Therefore the term Kij is not of order one, but rather of order 1/p(1 − p)

(ignoring the N dependence) in the original BEG network.
Recall that in [DK00] and [Bove02] a certain optimality of this model is shown, the

value of the factors being obtained by optimizing the mutual information of the system.
However, in [BV03], authors develop numerical estimations which suggest also that the
prefactor 1/(p2(1 − p)2) does not give the largest capacity.

It is also of interest to prove that not only the patterns ξµ are stable for T but also the dynamics
can correct corrupted patterns: if x is not too different from ξ 1, the network may retrieve ξ 1.
This is the principle of autoassociative memory. Using the same method as in the proof of the
preceding theorems (to be given in section 4) we prove the following result:

Theorem 3.5. Assume the patterns ξµ are chosen at random as described above and that
M = N

γ log N
. Let x ∈ {−1, 0, 1}N a configuration and

δ1 := 1

N
card

{
i :

∣∣ξ 1
i

∣∣ = 1, xi = 0
}
, δ2 := 1

N
card

{
i : ξ 1

i xi = −1
}

and

δ3 := 1

N
card

{
i : ξ 1

i = 0, |xi | = 1
}
.

Then

(1) For the threshold model with W = N(p−ε)

2 (and any ε > 0),

P[T (x) �= ξ 1] → 0

as N goes to infinity under the conditions:

δ1 + 2δ2 <
p

2
, δ3 < 1 − p, γ > max

{
2(p − δ1 + δ3)p

2

(p/2 − δ1 − 2δ2)2
, 8(p − δ1 + δ3)

}
.
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(2) For the BEG model,

P[T (x) �= ξ 1] → 0

as N goes to infinity under the conditions:

δ1 + 2δ2 < p, δ3 < 1 − p, 2(p − δ1 − δ2) >
p

1 − p
δ3, p − δ1 − p

1 − p
δ3 > 0,

γ > max

{
2(p − δ1 + δ3)(1 + (1 − p)2)(

p − δ1 − p

1−p
δ3

)2 ,
2p2(p − δ1 + δ3)(1 + (1 − p)2)

(1 − p)2
(
2(p − δ1 − δ2) − p

1−p
δ3

)2 ,

2p2(p − δ1 + δ3)

(p − δ1 − 2δ2)2

}
.

Remark 3.6. When all the δi go 0, we retrieve the conditions of the preceding theorems.
But the dependence on the δi is complicated in the general case. However in the simple case
δ1 = δ3 = 0 and δ2 �= 0, we obtain for the BEG model a result that is reminiscent of a result
known in the Hopfield model (e.g. [P95]): if δ2 < p/2, the correction is possible in one step
and the capacity is inferior to a constant (depending on p) proportional to (p − 2δ2)

2.

Finally, we prove that the BEG model is able to store ‘extensively many’ patterns (i.e. M(N)
grows like αN ) provided that Newman’s concept [N88] of storage is used.

Theorem 3.7. Assume the patterns ξµ are chosen at random as described above. Then
for the Hamiltonian of the BEG model defined in (2.5) the following holds true: if M(N)

scales like αN there exists an energy barrier around each of the patterns. I.e. there exists an
αc > 0 (depending on p, but not on N) such that if M(N) � αcN , then there are ε > 0 and
0 < δ < 1/2 such that for the Hamiltonian of the BEG model (2.5) it holds

P


lim inf

N→∞


M(N)⋂

µ=1

⋂
σ∈Sδ(ξµ)

{HN(σ) � HN(ξµ} + εN)





 = 1

where Sδ(ξ
µ) is the Hamming sphere of radius δN centred in ξµ.

Remark 3.8. Theorem 3.7 is a rigorous result in agreement with the findings in [BCS03] and
[BV03] that the BEG model can store up to αN patterns. However, all these complementary
results are difficult to compare. In [BCS03], the authors consider the BEG perceptron with
general couplings, a model with the same dynamics as the model we study. Studying the
basin of attraction of the patterns for the dynamics by a Gardner-type analysis [Ga88, ST03],
they get that there exist interactions such that the model can store up to αN patterns. And
in [BV03], following [AGS87], authors apply replica mean-field theory to calculate the free
energy of the BEG model.

4. Proofs

The proofs of the theorems stated in section 3 are detailed and explained below. The techniques
employed are adaptations of the usual large deviations analysis applied in [V94, P95, BS92,
N88, L94], or [T98] in the case of the Hopfield model.

Proof of theorem 3.1. Without loss of generality it suffices to analyse stability of the first
pattern ξ 1. Observe that—according to the definition of the dynamics T of the simple threshold
model—the pattern ξ 1 is stable if and only if

Ti(ξ
1) = ξ 1

i for all i = 1, . . . , N .
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Multiplying all the ξ
µ

i by ξ 1
i (a very simple ‘gauge transformation’), we can assume that the

ξ 1
i ’s are either 0 or 1. We distinguish these two cases.

Firstly, if ξ 1
i = 0, ξ 1

i is unstable if and only if Np2|hi(ξ
1)| > W . We estimate the

probability of this event by the exponential Markov–Chebyshev inequality ([Gr92], theorem
p 285, with h(x) = etx). For all t � 0

P
(
Np2|hi(ξ

1)| > W
∣∣ ξ 1

i = 0
) = 2P

(
Np2hi(ξ

1) > W
∣∣ ξ 1

i = 0
)

= 2P


∑

j �=i

∑
µ �=1

ξ 1
j ξ

µ

i ξ
µ

j > W
∣∣ ξ 1

i = 0




� 2e−tW
E


exp t

∑
j �=i

∑
µ �=1

ξ 1
j ξ

µ

i ξ
µ

j

∣∣ ξ 1
i = 0


 . (4.1)

Assume that exactly 0 � K � N of ξ 1
j are equal to 1 (and the others are equal to 0) and

without loss of generality assume that these are the first K, hence ξ 1
1 = · · · = ξ 1

K = 1 (which,
of course, implies that i � K + 1) and call this condition K. Then

E


exp t

∑
j �=i

∑
µ �=1

ξ 1
j ξ

µ

i ξ
µ

j

∣∣ ξ 1
i = 0,K


 = E


exp t

K∑
j=1

∑
µ �=1

ξ
µ

i ξ
µ

j




=
∏
µ �=1

Eξ
µ

i

K∏
j=1

Eξ
µ

j
etξ

µ

i ξ
µ

j ,

where Eξ
µ

j
denotes the expectation with respect to the random variable ξ

µ

j . Anticipating that
t > 0 will be chosen small at the end, we expand the right-hand side as

∏
µ �=1

Eξ
µ

i

K∏
j=1

Eξ
µ

j
etξ

µ

i ξ
µ

j ≈
∏
µ �=1

Eξ
µ

i

(
1 +

p

2
t2

(
ξ

µ

i

)2
+ O(t3)

)K

=
∏
µ �=1

[
p

(
1 +

p

2
t2 + O(t3)

)K

+ (1 − p)(1 + O(t3))

]

≈
(

1 +
Kp2t2

2
+ O(Kt3)

)M−1

� exp

(
K(M − 1)p2t2

2
+ O(KMt3)

)
.

Thus

P
(
Np2|hi(ξ

1)| > W
∣∣ ξ 1

i = 0,K
)

� 2 exp(−tW) exp

(
K(M − 1)p2t2

2
+ O(KMt3)

)
,

which for our choice of t = W
K(M−1)p2 gives

P
(
Np2|hi(ξ

1)| > W
∣∣ ξ 1

i = 0,K
)

� 2 exp

(
− W 2

2K(M − 1)p2
+ O

(
W 3

K2M2p6

))
.

Secondly, if ξ 1
i = 1, ξ 1

i is unstable if and only if Np2hi(ξ
1) � W . Again we assume that

ξ 1
1 = · · · = ξ 1

K = 1 and the other ξ 1
j ’s are 0 (and call this condition K) and estimate the
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probability of this event by the exponential Markov–Chebyshev inequality: for all t � 0

P
(
Np2hi(ξ

1) � W
∣∣ ξ 1

i = 1,K
)

� etW
E


exp −t

∑
j �=i

M∑
µ=1

ξ 1
j ξ

µ

i ξ
µ

j

∣∣ ξ 1
i = 1,K




� et (W−K)
E


exp −t

K∑
j=1

M∑
µ �=1

ξ
µ

i ξ
µ

j




� et (W−K) exp

(
K(M − 1)p2t2

2
+ O(KMt3)

)
(4.2)

where we compute the moment generating function as above. Choosing t = W−K
K(M−1)p2 yields

P
(
Np2hi(ξ

1) � W
∣∣ ξ 1

i = 1,K
)

� exp

(
− (W − K)2

2K(M − 1)p2
+ O

(
(W − K)3

K2M2p6

))
.

Now observe that with overwhelming probability, K
N

∈ [p − ε, p + ε] for some small ε > 0 if
N is large. Even more we have that with overwhelming probability

Sµ :=
N∑

j=1

∣∣ξµ

j

∣∣ ∈ [(p − ε)N, (p + ε)N ] (4.3)

for some small ε > 0 and all µ = 1, . . . ,M(N), if N gets large and for instance M(N) � N .
Hence, for N large enough, with overwhelming probability in ξ

P(ξ 1 is not stable) = P
(∃i=1,...,NTi(ξ

1) �= ξ 1
i

)
� N((1 − p) + ε)P

(
T1(ξ

1) �= ξ 1
1

∣∣ξ 1
1 = 0

)
+ N(p + ε)P

(
T1(ξ

1) �= ξ 1
1

∣∣ξ 1
1 = 1

)
� 2N((1 − p) + ε) exp

(
− W 2

2N(p − ε)(M − 1)p2
+ O

(
W 3

N2(p − ε)2M2p6

))

+ N(p + ε) exp

(
− (W − N(p − ε))2

2N(p − ε)(M − 1)p2
+ O

(
(W − N(p − ε))3

N2(p − ε)2M2p6

))
(4.4)

Since we think of p being independent of N in order to have the summands in (4.4) of the same
order, we choose the threshold as W = N(p − ε)/2 and we use the ansatz

M = M(N) = N

γ log N

for some γ > 0. Then

W 3

N2(p − ε)2M2p6
→ 0 as well as

(W − N(p − ε))3

N2(p − ε)2M2p6
→ 0

and we come to

P(ξ 1 is not stable) � 2((1 − p) + ε)N
− γ (p−ε)

8p2 +1
(1 + εN) + (p + ε)N

− γ (p−ε)

8p2 +1
(1 + εN)

for a sequence εN → 0. If now γ > 8p then also γ >
8p2

p−ε
for ε > 0 small enough, i.e.

− γ (p−ε)

8p2 + 1 < 0 and therefore

P(ξ 1 is not stable) → 0.
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If we are now asking for all of the patterns to be stable simultaneously, using the above line of
arguments together with (4.3), all this goes to show that

P(∃µ : ξµ is not stable) �
M∑

µ=1

P(ξµ is not stable)

= MP(ξ 1 is not stable)

� CN
− γ (p−ε)

8p2 +2
(1 + εN).

Here C is constant (depending on p and ε). The latter expression goes to zero for γ >
16p2

p−ε

which can be achieved, if γ > 16p by taking ε > 0 small enough.
Eventually, if we are heading for an almost sure result, considering that for γ > 24p

the sum
∑

N N
− γ (p−ε)

8p2 +2
is even finite and hence—using the Borel–Cantelli lemma—we can

conclude that eventually all patterns ξµ, µ = 1, . . . , M are stable with probability one. �

The proof in the case of the BEG network is rather similar in spirit to the above proof. However,
the details need to be worked out carefully.

Proof of theorem 3.3. We treat the question of whether a spin is fixed under the dynamics Ti

defined by (2.4) separately for the cases that this spin is 1 or 0 (again we can assume that the
pattern we are interested in just takes values 0 or 1).

Let us first assume that ξ 1
1 = 0. According to the definition of the retrieval dynamics in

the BEG-network T1(ξ
1) �= 0 if and only if

|h1(ξ
1)| > − 1

p2(1 − p)2N

∑
j �=1

M∑
µ=1

η
µ

1 η
µ

j

(
ξ 1
j

)2
.

Thus

P
(
T1(ξ

1) �= 0
∣∣ξ 1

1 = 0
) = P




∣∣∣∣∣∣
∑
j �=1

M∑
µ=1

ξ
µ

1 ξ
µ

j ξ 1
j

∣∣∣∣∣∣ > − 1

(1 − p)2

∑
j �=1

M∑
µ=1

η
µ

1 η
µ

j

(
ξ 1
j

)2∣∣ξ 1
1 = 0


 .

Assuming that ξ 1
j = 1 for j = 2, . . . , K � N and ξ 1

j = 0 for K < j � N (and

calling this condition K again) yields, that for µ = 1 one has
∑K

j=2 ξ 1
1 ξ 1

j ξ 1
j = 0 as well

as 1
(1−p)2

∑K
j=2 η1

1η
1
j

(
ξ 1
j

)2 = − (K−1)p

1−p
. Therefore

P
(
T1(ξ

1) �= 0
∣∣ξ 1

1 = 0,K
)

= P




∣∣∣∣∣∣
∑
j �=1

M∑
µ=1

ξ
µ

1 ξ
µ

j ξ 1
j

∣∣∣∣∣∣ > − 1

(1 − p)2

∑
j �=1

M∑
µ=1

η
µ

1 η
µ

j

(
ξ 1
j

)2∣∣ξ 1
1 = 0,K




� P


 K∑

j=2

M∑
µ=2

ξ
µ

1 ξ
µ

j +
1

(1 − p)2
η

µ

1 η
µ

j >
(K − 1)p

1 − p

∣∣∣∣∣∣ ξ 1
1 = 0,K




+ P


 K∑

j=2

M∑
µ=2

ξ
µ

1 ξ
µ

j − 1

(1 − p)2
η

µ

1 η
µ

j < − (K − 1)p

1 − p

∣∣∣∣∣∣ ξ 1
1 = 0,K


 .
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Along the lines of the proof of 3.1 one computes

E exp


t


 K∑

j=2

M∑
µ=2

ξ
µ

1 ξ
µ

j +
1

(1 − p)2
η

µ

1 η
µ

j







= exp

(
t2

2
(M − 1)(K − 1)p2

(
1 +

1

(1 − p)2

)
+ O(KMt3)

)
for t → 0, which gives by the exponential Chebyshev inequality

P
(
T1(ξ

1) �= 0
∣∣ ξ 1

1 = 0,K
)

� 2 exp

(
− K − 1

2(M − 1)((1 − p)2 + 1)
+ O(KM−2)

)
.

In the case that ξ 1
1 = 1 one has two possibilities that ξ 1

1 is not stable under the retrieval

dynamics: either �
(|h1(ξ

1)| + 1
p2(1−p)2N

∑
j �=1

∑M
µ=1 η

µ

1 η
µ

j

(
ξ 1
j

)2) = 0, or the corresponding

Heaviside function � = 1, but h1(ξ
1) < 0. Hence the following bound can be obtained

P
(
T1(ξ

1) �= 1
∣∣ξ 1

1 = 1,K
)

� P


 K∑

j=2

M∑
µ=2

ξ
µ

1 ξ
µ

j +
1

(1 − p)2
η

µ

1 η
µ

j < −2(K − 1)
∣∣ξ 1

1 = 1,K




+ P


 K∑

j=2

M∑
µ=2

ξ
µ

1 ξ
µ

j < −(K − 1)
∣∣ξ 1

1 = 1,K


 (4.5)

where we use the same condition K as above and that under the condition
{
ξ 1

1 = 1,K
}
, one has

that
∑

j �=1 ξ 1
1 ξ 1

j ξ 1
j = K − 1 as well as 1

(1−p)2

∑
j �=1 η1

1η
1
j

(
ξ 1
j

)2 = K − 1. The two summands
on the right-hand side of (4.5) are again estimated by the exponential Chebyshev inequality:
using the computations from above one obtains

P
(
T1(ξ

1) �= 1
∣∣ ξ 1

1 = 1,K
)

� exp

(
− 2(K − 1)(1 − p)2

(M − 1)p2((1 − p)2 + 1)
+ O(KM−2)

)

+ exp

(
− K − 1

2p2(M − 1)
+ O(KM−2)

)
. (4.6)

Again with overwhelming probability K ∼ pN and (4.3) holds true. Thus putting M = N
γ log N

we obtain that with overwhelming probability

P
(
T1(ξ

1) �= 0
∣∣ξ 1

1 = 0,K
)

� 2N
− γp

2((1−p)2+1) (1 + εN)

as well as

P
(
T1(ξ

1) �= 1
∣∣ξ 1

1 = 1,K
)

�
(
N

− 2γ (1−p)2

p((1−p)2+1) + N
− γ

2p

)
(1 + εN)

for a sequence εN → 0. In order to guarantee that ξ 1 is fixed we need to have all ξ 1
i = 1

are mapped to 1 by Ti and that all ξ 1
i = 0 are mapped to 0 by Ti . This can be guaranteed

(with probability converging to one), if all of N
1− γp

2((1−p)2+1) , N
1− 2γ (1−p)2

p((1−p)2+1) , and N
1− γ

2p converge
to zero. This is true if

γ > max

{
2((1 − p)2 + 1)

p
,
p((1 − p)2 + 1)

2(1 − p)2
, 2p

}
= γ ∗(p).

Hence for γ > γ ∗(p) we have that

P
(∃i : Ti(ξ

1) �= ξ 1
i

) → 0
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as N → ∞. And the third term 2p may be omitted since 2((1 − p)2 + 1) > 2p2 for all
p ∈ ]0, 1[.

If we ask for the probability that all patterns are stable with a probability converging

to one, we even need to assure that MN
1− γp

2((1−p)2+1) ,MN
1− 2γ (1−p)2

p((1−p)2+1) and MN
1− γ

2p converge to
zero. This is true if γ > 2γ ∗(p).

Eventually, if we are interested in the equation that all patterns become stable with

probability one, we need to assure that MN
1− γp

2((1−p)2+1) ,MN
1− 2γ (1−p)2

p((1−p)2+1) and MN
1− γ

2p are even
summable, to be able to apply a Borel–Cantelli argument as above. The latter is true if
γ > 3γ ∗(p). �

Finally, we analyse the other kind of storage capacity.

Proof of theorem 3.7. For J ⊆ {1, . . . , N}, |J | = δN (for simplicity we assume that δN is
an integer), let us denote by ξ

µ

J = (
ξ

µ

J,i

)
i=1,...,N

the vector that disagrees with a given pattern
ξµ on exactly the coordinates j ∈ J . For a given ε > 0 we are interested in the probability

P

(⋃
µ

⋃
J

HN

(
ξ

µ

J

)
� HN(ξµ) + εN

)
� MP

(⋃
J

HN

(
ξ 1
J

)
� HN(ξ 1) + εN

)
.

By symmetry, we assume again that ξ 1
i ∈ {0, 1} for all i ∈ {1, . . . , N}. Then

P

(⋃
J

H
(
ξ 1
J

)
� HN(ξ 1) + εN

)
= P


 ⋃

J1,J2,J3,J4

HN

(
ξ 1
J

)
� HN(ξ 1) + εN


 ,

where

J =
4⋃

k=1

Jk, J1 = {
i : ξ 1

i = 1, ξ 1
J,i = 0

}
, J2 = {i : ξ 1

i = 1, ξ 1
J,i = −1},

J3 = {
i : ξ 1

i = 0, ξ 1
J,i = −1

}
, and J4 = {

i : ξ 1
i = 0, ξ 1

J,i = 1
}
.

Let S1 = card
{
j : ξ 1

j = 1
}

and ki = card(Ji), i = 1, . . . , 4. Then

P

(⋃
J

HN

(
ξ 1
J

)
� HN(ξ 1) + εN

)
=

N∑
K=0

PK

(⋃
J

HN

(
ξ 1
J

)
� HN(ξ 1) + εN

)
P(S1 = K)

(4.7)

where PK(·) denotes the conditional probability under the condition that S1 = K . Now

N∑
K=0

PK

(⋃
J

HN

(
ξ 1
J

)
� HN(ξ 1) + εN

)
P(S1 = K)

�
N∑

K=0

∑
k1,k2,k3,k4

d(k1, k2, k3, k4)PK

(
HN

(
ξ 1
J

)
� HN(ξ 1) + εN

)
P(S1 = K),

where

d(k1, k2, k3, k4) =
(

K

k1

)(
K − k1

k2

)(
N − K

k3

)(
N − K − k3

k4

)
and the sum is over k1, k2, k3, k4 such that k1 + k2 � K, k3 + k4 � N −K, k1 + k2 + k3 + k4 =
δN . For calculations we may choose ξ 1 and ξ 1

J as particular configurations on the right-hand
side: for instance ξ 1

i = 1 for i = 1, . . . , K , and J1 = {1, . . . , k1}, J2 = {k1 + 1, . . . , k1 + k2},
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J3 = {K + 1, . . . , K + k3}, J4 = {K + k3 + 1, . . . , K + k3 + k4}. For N ∈ N
∗, µ = 1, 2, . . . , M ,

and σ ∈ {−1, 0, +1}N define

H̃
µ

N(σ ) := − 1

2p2N

N∑
i,j=1;i �=j

σiσj ξ
µ

i ξ
µ

j = − 1

2p2N




(
N∑

i=1

σiξ
µ

i

)2

−
N∑

i=1

(
σiξ

µ

i

)2




and

H
µ

N(σ) := − 1

2p2(1 − p)2N

N∑
i,j=1;i �=j

σ 2
i σ 2

j η
µ

i η
µ

j

= − 1

2p2(1 − p)2N




(
N∑

i=1

σ 2
i η

µ

i

)2

−
N∑

i=1

(
σ 2

i η
µ

i

)2


 .

Then

HN(σ) =
M(N)∑
µ=1

H̃
µ

N(σ ) + H
µ

N(σ).

A little computation shows that for K = λN (which we assume to be an integer) and δi = ki/N ,

H̃ 1
N(ξ 1) − H̃ 1

N

(
ξ 1
J

) = −N

((
δ1 + 2δ2

p

)(
λ

p
− δ1 + 2δ2

2p

)
+ O

(
1

N

))
,

and

H
1
N(ξ 1) − H

1
N

(
ξ 1
J

) = −N

((
δ1

p
+

δ3 + δ4

1 − p

) (
λ

p
− δ1

2p
− δ3 + δ4

2(1 − p)

)
+ O

(
1

N

))
.

Hence with H 1
N(σ ) := H̃ 1

N(σ ) + H
1
N(σ ) we obtain that

H 1
N(ξ 1) − H 1

N

(
ξ 1
J

) = −N

(
c + O

(
1

N

))
for a positive constant

c = c(p, λ, δ1, δ2, δ3, δ4) :=
(

δ1 + 2δ2

p

) (
λ

p
− δ1 + 2δ2

2p

)

+

(
δ1

p
+

δ3 + δ4

1 − p

) (
λ

p
− δ1

2p
− δ3 + δ4

2(1 − p)

)
(4.8)

For µ = 2, . . . , M , we have

H̃
µ

N(ξ 1) − H̃
µ

N

(
ξ 1
J

) = − 1

2p2N


(

N∑
i=1

ξ
µ

i ξ 1
i

)2

−
(

N∑
i=1

ξ
µ

i ξ 1
J,i

)2

 + O(1)

= − 1

2p2N

((
N∑

i=1

ξ
µ

i ξ 1
i

)
−

(
N∑

i=1

ξ
µ

i ξ 1
J,i

)(
N∑

i=1

ξ
µ

i ξ 1
i

)

+

(
N∑

i=1

ξ
µ

i ξ 1
J,i

))
+ O(1)

= − 1

2p2N
AB + O(1),

where

A =
∑
i∈J1

ξ
µ

i + 2
∑
i∈J2

ξ
µ

i +
∑
i∈J3

ξ
µ

i −
∑
i∈J4

ξ
µ

i
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and

B =
∑
i∈J1

ξ
µ

i −
∑
i∈J3

ξ
µ

i +
∑
i∈J4

ξ
µ

i + 2
∑
i∈J5

ξ
µ

i ,

where J5 = {
i : ξ 1

i = ξ 1
J,i = 1

}
. Expanding the product AB, we get

H̃
µ

N(ξ 1) − H̃
µ

N

(
ξ 1
J

)
� − 1

2p2N

(
2P

µ

15 + 2P
µ

21 − 2P
µ

23 + 2P
µ

24

+ 4P
µ

25 − P
µ

33 + 2P
µ

34 + 2P
µ

35 − P
µ

44 − 2P
µ

45

)
+ O(1), (4.9)

where

P
µ

kl =

∑

i∈Jk

ξ
µ

i





∑

i∈Jl

ξ
µ

i


 ,

and we use P
µ

11 � 0.
Similarly, we obtain for the second part of the Hamiltonian

H
µ

N(ξ 1) − H
µ

N

(
ξ 1
J

) = − 1

2p2(1 − p)2N
CD + O(1),

where

C =
∑
i∈J1

η
µ

i −
∑

i∈J3∪J4

η
µ

i

and

D =
∑
i∈J1

η
µ

i + 2
∑

i∈J2∪J5

η
µ

i +
∑

i∈J3∪J4

η
µ

i .

Expanding the product CD, we get

H
µ

N(ξ 1) − H
µ

N

(
ξ 1
J

)
� − 1

2p2(1 − p)2N

(
2Q

µ

12 + Q
µ

14 + 2Q
µ

15 − 2Q
µ

32 − Q
µ

33

− 2Q
µ

34 − 2Q
µ

35 − Q
µ

41 − 2Q
µ

42 − Q
µ

44 − 2Q
µ

45

)
+ O(1), (4.10)

where

Q
µ

kl =
∑
i∈Jk

η
µ

i

∑
i∈Jl

η
µ

i ,

and we use Q
µ

11 � 0. Then we have

PλN

(
HN

(
ξ 1
J

)
� HN(ξ 1) + εN

)
= PλN


 M∑

µ=2

H
µ

N(ξ 1) − H
µ

N

(
ξ 1
J

)
� (c − ε)N

(
1 + O

(
1

N

))
 ,

and equations (4.9) and (4.10) give the bound

P
(
HN

(
ξ 1
J

)
� HN(ξ 1) + εN |S1 = λN

)
� P


− 1

p2N

M∑
µ=2

P
µ

15 � c − ε

21
N

(
1 + O

(
1

N

))
 + · · ·

+ P


 1

p2(1 − p)2N

M∑
µ=2

Q
µ

45 � c − ε

21
N

(
1 + O

(
1

N

))
 .
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Now again, for N large enough with overwhelming probability S1 ∼ pN . From (4.7)
it immediately follows that it will be possible to restrict our considerations to the case
λ ∈ [p − ε′, p + ε′] for a fixed ε′ > 0 arbitrarily small.

Finally we need the bounds of lemma 4.1 stated below. It gives exponential bounds on
the probabilities of interest.

Assume M = αN , for some constant α > 0 not depending on N. Then, if ZN is a
random variable such that P (ZN � γM) � e−F(γ )M for aγ > 0 and a positive function
F, one immediately obtains that P (ZN � εN) � e−αF( ε

α
)N . Hence to achieve the proof,

we have to show that for α sufficiently small, there exist δ, ε, ε′ > 0 such that for all
δ1, δ2, δ3, δ4 > 0, δ1 + δ2 � λ, δ3 + δ4 � 1 − λ, and δ1 + δ2 + δ3 + δ4 =: δ, we have for Fi as in
lemma 4.1

αFi

(
c(p, λ, δ1, δ2, δ3, δ4) − ε

21α

)
> Q(p, λ, δ1, δ2, δ3, δ4) for i = 1, 2, 3, 4, (4.11)

where Q is defined by(
K

k1

)(
K − k1

k2

)(
N − K

k3

)(
N − K − k3

k4

)
=: eN(Q+O( 1

N
)).

Using Stirling’s formula, we get

Q = −
4∑

i=1

δi log(δi) + (δ1 + δ2) log(λ − δ1 − δ2) − λ log

(
1 − δ1 + δ2

λ

)

+ (δ3 + δ4) log(1 − λ − δ3 − δ4) − (1 − λ) log

(
1 − δ3 + δ4

1 − λ

)

= −
4∑

i=1

δi log(δi)

(
1 − 1 + log(p)

log(δi)

)
+ O((δ1 + δ2)

2 + (δ3 + δ4)
2).

Since the function f (x) = −x log(x) is increasing for x ∈ [0, e−1], there exists a constant
c6 > 0 such that for δ > 0 sufficiently small and all admissible δi ,

Q � −c6δ log(δ). (4.12)

Now there exist strictly positive constants c1, . . . , c5 depending only on p and ε′ such that

c − ε > (1 − c5δ)

4∑
i=1

ciδi − ε >
(1 − c5δ)c

∗

2
δ, (4.13)

where c∗ = min{ci, i = 1, . . . , 4} and ε := (1−c5δ)c
∗

2 δ. Let us consider the different cases:

• The function F1 verifies αF1
(

γ

α

) ∼ 2γp2
√

γ1γ2
for small α. Hence to tackle the terms with

Pij , i �= j , we get the condition

2p2(c − ε)

21
√

δiδjQ
> 1, (4.14)

which is equivalent to (4.11). Using (4.12) and (4.13), we have

2p2(c − ε)

21
√

δiδjQ
> −p2(1 − c5δ)c

∗

21c6

δ√
δiδj δ log(δ)

.

For i, j ∈ {1, 2, 3, 4}, we have

− δ√
δiδj δ log(δ)

� − 1

δ log(δ)
−→ +∞, as δ −→ 0.
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For i ∈ {1, 2, 3, 4} and j = 5, since δ5 := λ − δ1 − δ2 � p + ε′ we get

− δ√
δiδj δ log(δ)

� −
√

δ

(p + ε′)δ log(δ)
−→ +∞, as δ −→ 0.

Hence (4.14) is verified for all Pij , i �= j for δ sufficiently small.

• The function F2 satisfies αF2
(

γ

α

) = γ 2p4

αγ1
2 . Hence for the terms with P33 and P44, using

(4.12) and (4.13) we get

αF2
(

c−ε
21α

)
Q

� −
(

(1 − c5δ)c
∗p2

42

)2
1

c6αδ log(δ)
,

which is > 1 for small δ and α.
• The function F3 is the same as F1 up to a constant depending only on p, which implies

(4.11) for i = 3.
• The function F4 satisfies αF4

(
γ

α

) = γ

v
− α

2 + α
2 log

(
αw
2γ

) ∼ γ

w
, for small α, where

w = (1 + |2p − 1|)2

4p2(1 − p)2
γ1.

Hence for the terms with Qii , we have to verify
4p2(1 − p)2

(1 + |2p − 1|)2

c − ε

21δiQ
> 1, for i = 3, 4.

Using (4.12) and (4.13), we get
c − ε

21δiQ
> −c7

1

δ log(δ)
,

for some c7 > 0, which implies the result for δ sufficiently small. �
Finally let us state and prove the lemma we have just used.

Lemma 4.1. Let p ∈ ]0, 1[ and
(
ξ

µ

i

)µ=1,...,M

i=1,...,N
be independent random variables such that

1 − p = P
(
ξ

µ

i = 0
)

and P
(
ξ

µ

i = 1
) = P

(
ξ

µ

i = −1
) = p

2
.

Let I1, I2 ⊂ {1, . . . , N}, I1 ∩ I2 = ∅, such that card(I1) = γ1N and card(I2) = γ2N . Let
P

µ

k = ∑
i∈Ik

ξ
µ

i and Q
µ

k = ∑
i∈Ik

((
ξ

µ

i

)2 − p
)

for k = 1, 2. Then for s ∈ {−1, 1}, for all
γ > 0,

(i)

P


 s

2p2NM

M∑
µ=1

P
µ

1 P
µ

2 � γ


 � e−F1(γ )M,

where

F1(γ ) = 1

2

(√
1 + 4u2γ 2 − 1 + log

(√
1 + 4u2γ 2 − 1

2u2γ 2

))

and

u = 2p2

√
γ1γ2

.

(ii)

P


 1

p2NM

M∑
µ=1

(
P

µ

1

)2 � γ


 � e−F2(γ )M

where

F2(γ ) = γ 2p4

γ1
2

,
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(iii)

P


 s

2p2(1 − p)2NM

M∑
µ=1

Q
µ

1 Q
µ

2 � γ


 � e−F3(γ )M,

where

F3(γ ) = 1

2

(√
1 + 4v2γ 2 − 1 + log

(√
1 + 4v2γ 2 − 1

2v2γ 2

))

and

v = 8p2(1 − p)2

(1 + |2p − 1|)2√γ1γ2
.

(iv)

P


 1

2p2(1 − p)2NM

M∑
µ=1

((
Q

µ

1

)2 � γ
) � e−F4(γ )M

where

F4(γ ) = 1

2

((
2γ

w
− 1 + log

(
w

2γ

)
,

)
and

w = (1 + |2p − 1|)2

4p2(1 − p)2
γ1.

Proof of lemma 4.1. To obtain the different bounds, we use the exponential Markov inequality:
for a sum of independent variable Z = ∑M

µ=1 Zµ, for all γ > 0,

P (Z � γM) � inf
t>0

e−γ tM
(
E

[
etZ1])M

.

Thus we have to evaluate the exponential moment in the four different cases and to mimimize
in t. For (i) and (ii) we use the same method as in [N88]. More precisely we have

E

(
exp

(
t

2p2N
P 1

1 P 1
2

))
� E

(
exp

(
t
√

γ1γ2

2p2

(
1√
γ1N

∑
i∈I1

Xi

) (
1√
γ2N

∑
i∈I2

Xi

)))

= E

(
exp

(
t
√

γ1γ2

2p2
X1X2

))
,

and

E

(
exp

(
t

2p2N

(
P 1

1

)2
))

� E


exp


 tγ1

2p2

(
1√
γ1N

∑
i∈I1

Xi

)2




 = E

(
exp

(
tγ1

2p2
(X1)

2

))
,

where the Xi are independent standard normal random variables. Then exact calculations give
the results. For (iii) we have

E

(
exp

(
t

2p2(1 − p)2N
Q1

1Q
1
2

))
= E(ξ 1

i )i∈I1

(
E(ξ 1

i )i∈I2

(
exp

(
t

2p2(1 − p)2N
Q1

1Q
1
2

)))

= E(ξ 1
i )i∈I1

((
p exp

(
t

2p2(1 − p)N
Q1

1

)

+ (1 − p) exp

(
− t

2p(1 − p)2N
Q1

1

))γ2N
)

,
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where E(ξ 1
i )i∈I1

denotes the expectation with respect to the random variables
(
ξ 1
i

)
i∈I1

. Then
using the inequality

p e(1−p)t + (1 − p) e−pt � cosh

(
(1 + |2p − 1|) t

2

)
� e(1+|2p−1|)2 t2

8 , ∀ t ∈ R (4.15)

we get for a standard normal random variable X

E

(
exp

(
t

2p2(1 − p)2N
Q1

1Q
1
2

))
� E(ξ 1

i )i∈I1

(
exp

(
(1 + |2p − 1|)2γ2t

2

32p4(1 − p)4N

(
Q1

1

)2
))

= EX

(
E(ξ 1

i )i∈I1

(
exp

(
(1 + |2p − 1|)√γ2t

4p2(1 − p)2
√

N
Q1

1X

)))
,

= EX

(
p exp

(
(1 + |2p − 1|)√γ2t

4p2(1 − p)
√

N
X

)

+ (1 − p) exp

(
− (1 + |2p − 1|)√γ2t

4p(1 − p)2
√

N
X

)γ1N
)

� EX(exp(c8t
2X2))

= 1√
1 − 2c8t2

,

where

c8 = (1 + |2p − 1|)4γ1γ2

128p4(1 − p)4N
.

To obtain (iv) we write for a standard normal random variable X

E

(
exp

(
t

2p2(1 − p)2N

(
Q1

1

)2
))

= EXE

(
exp

( √
t

p(1 − p)
√

N

(∑
i∈I1

((
ξ

µ

i

)2 − p
))

X

))

= EX

(
p exp

(
X

√
t

p
√

N

)
+ (1 − p) exp

(
−X

√
t

(1 − p)
√

N

))γ1N

.

Then using inequality (4.15) we get

E

(
exp

(
t

2p2(1 − p)2N

(
Q1

1

)2
))

� EX

(
ec9tX

2) = 1√
1 − 2c9t

,

with

c9 = (1 + |2p − 1|)2

8p2(1 − p)2
γ1.

�

5. Concluding remarks

In this paper, we have compared the performance of the Blume–Emery–Griffiths neural
network to the simplest three-state network, the simple threshold network. When the storage
capacity is defined as the number of patterns that can be permitted such that they (one or all of
them) are fixed points of the retrieval dynamics, both these networks show a storage capacity
of M = N/γ log N for an appropriately chosen γ . Nevertheless for small values of p (the
activity of the network), the simple threshold model outperforms the BEG model. As in the
paper [BV03], this finding seems to contradict the optimality of the BEG model claimed in
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[DK00, BoVe02]. However their optimality criterion differs from our simple storage capacity
criterion.

Moreover we have proved that with a more liberal definition of storage capacity, the BEG
is able to store M = αN patterns for some α > 0. Although our approach is different and a
direct comparison is not possible, this supports the results in [BCS03, BV03] that were found
with the help of the replica method (even though with a probably different value for α).
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